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I. Introduction. 
 

      We show here derivation for signal development in the Antiproton source quadrupole 
BPM. This is a quad pickup made of 1 m long electrostatic striplines. Each plate is 
connected to its own high impedance preamp mounted nearby  and then output signals 
are going via long lines up to the service building. In order to suppress common mode, 
the preamps are designed as low frequency bandpass filters with maximum response at  
10% of  revolution frequency and 35 dB suppression of the first revolution harmonic.  
Thus the response is substantially nonuniform so both amplitude and phase corrections 
have to be made as signals at 3 different frequencies are involved. Cross-talk corrections 
have also been calculated. 
 

II. Signal combinations. 
 
       A simple single pair pickup response is never exactly linear with the beam 
displacement. Leaving only first and second order terms voltage on plates in high preamp 
impedance approximation is: 
 
  { })(1)(),( 22 yxbaxtZIyxVx −+±=±     (1a) 
  { })(1)(),( 22 yxbaytZIyxVy −−±=±     (1b) 
 
where a and b are the pickup geometry parameters. Using 4 signals one can build linear 
combinations: 
 
 

x12 axVxVXXDX ∝−−+=−=     (2a) 

y12 ayVyVYYDY ∝−−+=−=      (2b) 

2y2x112 −+∝+= bXXSX  

2y2x112 −−∝+= bYYSY      (3) 

 
Combinations (2) are normally used in regular dipole pickups. Combinations 3 are not of 
a good use unless both are available at the same location. In case of a quadrupole pickup 
they are and combination 



 
2y2x −∝−= bSYSXQ           (4) 

 
gives access to the nonlinear term of pickup response and technique to measure bilinear 
beam characteristics. For instance,  ellipticity  )(2)(2 t

y
t

x
σσ −  can be used to determine the 

beam size or to observe quadrupole oscillations of the beam size. Following sections give 
more insight into this technique. 
 
 

III. Frequency contents. 
 
Let’s consider transverse (horizontal in this notation) motion of an individual particle. 
Particle position is a sum of 3 components:   

 
ii xXXx ~
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X0 - orbit position,   

)cos()( xxrd tXtX ϕνωβ +=  - coherent dipole (betatron) motion,  
xi  -individual betatron motion with respect to the center of beam. 
 
Putting this into (1a) and taking average over all particles in the beam we have 
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     This expression is broken up into 3 parts for convenience. “ ± ” here corresponds to 
left and right (top and bottom) plates. Picking right signal combination one can 
effectively cancel contribution of symmetric or asymmetric components. Part (7-I) 
contains constant parameters, therefore it appears in signal as constant term and 
revolution harmonics.  Looking at  S0=SX+SY  at revolution frequency and moving the 
beam center position one can find the value of b and the beam center position. The slope 
of  DX plotted versus beam position would give value of a. Combination Q at revolution 
frequency can even be used to measure the beam size if electronics is calibrated at the 
level of better than 0.1%. 
      Part (7-II) contains linear amplitudes and mainly appears at betatron frequencies. DX 
and DY  should give a clear dipole signal at betatron frequency. 
      Consequently, part (7-III) works at double betatron frequencies. It is clear that signal 
combination Q  at this frequency is contributed by two sources,  
 



QqQdQ +=)2(  
 

where Qq is a pure quadrupole signal and Qd is a nonlinear part of dipole signal. In 
general in order to get to Qq, one has to be able to do careful subtraction of Qd from 
measured signal Q. 
 

IV. Imposing bunch structure of injected beam and response curve. 
 
       If V(t) is the signal induced on the pickup plates, then the end signal received from 
the DAQ is its convolution with the response function of the electronics 
 

GV(t)U(t) ⊗=  
 
In frequency domain, we will present G(w) for convenience, as G=G0g(w) with g(w) 
being the frequency response function and G0  - the general scale constant. For further 
convenience we will hide some other constants into G0, too. V(t) here is  a function of  t 
described in eq.(7) . Although Accumulator is designed to handle a DC beam, main area 
of quadrupole pickup applications is related to bunched beam operations, in particular at 
reverse proton injection, so we should treat in general  I(t) as a periodic function  

∑ −=
n

TntfI )(*I(t) 0 ,    where  )(tf   is a rectangular unit function. 
 
Let’s consider part (7-I) in the simplest form I(t)*V(t) Z= . We have to take into 
account different revolution times for individual particles due to dispersion: 
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)( pξ  is a momentum distribution in the beam. Because this is a periodic structure, it can 
be expanded in harmonic series. In order to find coefficients we use the following trick: 
 
The Fourier image for the signal is: 
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here s(x)=sin(x)/x,  , τ is an incoming bunch train duration. Using the property 
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ian kae )2(2 πδπ , we get 
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Now conversion back to time is also simple: 
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F(x)  here is the Fourier transform for the momentum distribution function.  Obviously, 
the width of this function is smaller for higher harmonics. And now coupling this with the 
response function, we arrive at the expansion for the “common mode” signal: 
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Note that argument in s-function  has a meaning:  
h
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00 , where bN is a 

number of bunches in an injected train and h is a total rf harmonic number for the ring. 
 
For terms like (7-II) we use the same trick and obtain: 
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Here we had to take into account chromaticity  Cx.  
 
And similarly, decomposition into series for functions of the (7-III) type is 
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Obvious properties of  F(x): 
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        0,,2 =±nδ   if  f(p)  is symmetric. 
 
       It can be clearly seen that at high chromaticity signal decays quickly due to 
decoherence of oscillation signal.  Another conclusion from equations 8-10 is that signal 
is strongly dominated by the common mode component (8), unless properly filtered. 
 
 
 

V. Calculation of geometric parameters and their frequency 
dependence (cross-talk). 

 
In case of infinite preamplifier input impedance beam with charge Qb would induce 
potential at the i-th  plate 
 

bi Qyxiayx *),,(),( =∞ϕ   
 
and when beam is exactly at the center,     0)0,0( Vi =∞ϕ  
 
for small compared to aperture deviations of beam from the center, induced potential may 
be approximated as  
 

)}(**1{*),( 22
000 yxbxaVyxi −+±=∞ϕ  

 
geometric coefficients 0a ,  0b    can be computed from the electrostatic model of BPM. 
This was done using MERMAID program. Obtained response signal combinations DX 
and Q are shown in Figure 1 as functions of pick-up position. 
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Figure 1. Induced signal on the plates as function of PU position. 
 
Now let’s take into account the preamp’s impedance at finite frequency, see Figure 2. 

 
 

 
 

Figure 2. Input impedance of the QBPM preamplifier. 
 
As in our case dA CC ≅ ,   effective parallel capacitance significantly changes at low 
frequencies. 
 

kikiwi qSyxyx *),(),( ,, +=
∞

ϕϕ ,    
 
where [ ] [ ] 1−= ikik CS ,    inverse capacitance matrix. The meaning of this equation is the 
following:  at low frequencies input impedance may be considered very high,  and the 
total charge on the pickup plates remain zero. At higher frequencies this is not so 



anymore, because impedance becomes smaller. This charge  results in changing the 
potentials on plates (cross-talk).  Solving this equation yields:     
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and  coefficients  a   and   b  become  frequency dependent. 
       The capacitance matrix was calculated in framework of the same program. Setting on 
the right plate such a charge that its potential is 1V (this is not necessary, and was done 
for convenience of computations only), see Figure 3, we calculate potential on other 
plates. 
 

 
 

Figure 3. Computation of the cross-capacitance matrix. 
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Now we can reconstruct the whole matrix using its symmetry: 
 

143342112 Si==== SSSS  

32442233241143113 Si======== SSSSSSSS  

244332211 Si==== SSSS  
 
and now using eq. (11) we can calculate dependence a(f) and b(f), as shown in Figure 4. 
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Figure 4(a,b). Calculated dependence a(f) and b(f) 

 
 

The measured and calculated parameters are compared in Table 1.  Table also contains 
parameters a0 and b0 measured in beam position scans. There is a very good agreement 
with the horizontal scan. For reasons not yet fully understood at this moment vertical 
scan doesn’t agree very well with the horizontal one. 
 

Table 1. The calculated and measured geometric parameters. 
 

  
Model, f= ∞  

 
Model, f=f0 

 
Horz. meas. 

 
Vert. meas. 

 
a 0.0450 0.0493 0.0498 0.0455 
b 0.00119 0.00135 0.00132 0.00146 

 
 



 
VI. Application to measurements. 

 
 
       As it has been pointed out earlier, quadrupole oscillations decohere quickly if the 
chromaticity is high. This is the case for the extraction orbit in Accumulator. For this 
reason real measurements require modifications in preamplifiers. This is being addressed 
presently, meanwhile benchmark dedicated measurements were done with artificially 
lowered chromaticity. 
    We set up injection with a large dipole mismatch, so that the quadrupole signal is 
completely dominated by the dipole component Qd, in this case we should be able to 
determine this component based on the dipole signal measured at single betatron 
frequency. 
    We can rewrite amplitudes of known signal combinations according to eq. (8-10): 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

2
0

2
0sin

0080 τω

τω

IGgS     (12) 

0
0

1
4
1)1(

0 S
g

g
dX

a
DX =     (13) 

0

2
0

2
1

02
2

1

242
0

0

2
4
2)2(

0 S

DX

g

gg

a

b
dXS

g

gb
Q ==     (14) 

 
where            ( ))1( 01 xaa νω −= ,    ( ))12( 02 −= xbb νω ,  upperscript (1) and (2) in 
eq.(13,14) denote single and double betatron frequency.  It seems convenient to tie 
amplitudes with parameter Kf, which can be independently determined from both 
measurements and calculations: 
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using parameters a, b calculated in previous sections, we expect the dipole term in 

the quadrupole signal to have the form: 
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Here time decay constant σ  and phase 1φ  are taken from the dipole mode fit, and 

PAφ  is the phase advance  between single and double betatron frequency in the preamp 
response. 
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Figure 9. Measured and calculated dipole component in quadrupole signal 

 
Not only the amplitude, expected phase fits measured signal nicely, which verifies 

the calculations performed above. Another setup was to make betatron mismatch 
dominant,  measured quadrupole signal is compared with calculated Qd in Fig. 10: 
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Figure 10. Pure quadrupole oscillation signal in absence of dipole component. Beats are 

artifacts of aliasing due to frequency cuts applied on measured signal. 
  
 The dipole component is negligible and quadrupole oscillation signal is clearly 
seen although its amplitude is low.  Parasitic components at revolution and betatron 
frequencies were removed from the Quad_t  signal, this was done by filtering a broad 
region around double betatron frequency in FFT spectrum of  Q signal combination and 
then deconverting this region back to time domain. This explains aliasing modulations of 



the signal sin-wave. Observed amplitude of quadrupole oscillation is consistant with the 
introduced betatron mismatch assuming πε 16=beam  for injected Reverse proton beam, 
and corresponds to emittance growth of 50%.  
 
 

VII. Conclusions. 
 
We presented here formulae derivation for calculations of signals in the quadrupole 
Accumulator BPM.  Electrostatic model was used to compute the geometry parameters 
for this pick-up as well as their frequency dependence (cross-talk effect). Obtained 
relations between signals at single and double betatron frequency were examined and 
have shown a good agreement with direct measurements. 


